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techniques to radar inverse scattering. The goal in radar inverse
scattering is to identify an unknown radar target by techniques that
make fundamental use of the physics of electromagnetic scattering°
Inverse scattering methoas yield basic descriptors of targets, such as
lengths, diameters, and radii of curvature. The hope is that these
descriptors will permit target identificatioa without the coraputer
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identification methods. This effort was supported by 6.L funds from
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INTRODUCTION Cp
jNSpECTFDO

Many approaches t, electromagnetic inverse scattering allow
reconstruction of tsirge. shape only by assuming broadband data over a
large, or even complett., set of aspects (References I and 2). Because
of problems with noniniiueness of solutions, this is often necessary.
Unfortunately, howevi: such stringent requirements limit the applica-
bility of the developed techniques. In radar-target-identification
problems, for examrle. we typically are restricted to high frequencies
and an unknown but ve, - small range of aspects (aspects being defined
by target orientati. i. Adding to these difficulties are typical
complex target strvLures consisting of distributed (perhaps interac-
t-in-) ---- 3-- -- - reQ wr traryifcT rPf1PntiviPR anti vaayrnrittetd intrinsic

phase shifts. la .:nct, very few target characteristics can be deter-
mined with certairLy; we must approach the problem statistically.

Surprisingly, statistical methods in theoretical inverse scatter-
ing have not found much favor in problems involving target-shape esti-
mation. Moreover, many of the applications-oriented developments tend

to be ad hoc in nature and rely heavily on large data bases and the
special training of human operators. These methods are often based on

t!.R simplitude statistics of the scattering centers and frequently
require extensive a priori information before they can be considered
useful.

We develop a statistical inverse method that allows for shape
reconstruLtion of such symmetric complex targets. These targets are
assumed L. consist of many independent scattering centers distributed
within a finite region of space and are expected to "wobble" (with
time) in a small but unknown manner. The data used in the reconstruc-
tion consist of phase derivatives of the kind that are currently used
fcr phzise-difference radar tracking. We proceed by first examining the
statistics of these phase derivatives, then showing how they are

related to target shape, and fiaLally by developing a shape-

reconstruction algorithm based on these results. Examples using
synthetic data are displayed. We finish by describing a proposed
method for measuring the required phase-derivative statistics with a
practical antenna array.
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STATISTICS OF THE PHASE DERIVATIVES

A statistical model 1'ased on cross sectionf can hardly be expected
to be of much utility in shapc determinatiou 'or complc'x targets,
because scattering amplitude depends in a sensitive and comnplicaved wlay
on local scattering center structure and morphology. However, it has
long been realized that a wealth of target-shape information is
contained in the phase of the asymptotic scattered field. The trouble
is, of course, that this phase information is very difficult to obtain
with any accuracy over a set of aspects. On the other hand, phase-
derivative information can be approximated to good accuracy by
measuring the phase differences between closely spaced sensors. In
radar applications, for example, the method is known as phase monopulse
and has been extensively studied in its relationship to tracking
problems (Reference 3). Because of practical considerations, such as
noisy measurements and inaccurate aspect information, the first
derivacives are determined by these kindsof "point" measurements using
two receiving antennas. In general, the jth derivative would require
an array of J + I antennas.

If F E Eei4 denotes the scattered field, then the phase is just

*=arctan (-i F-
F +F*)

so that

21 F3F*/an - F*3F/ an

an 2FF*

Consider a situation in which the scattering centers associated with a

complex extended body are excited by an incident plane wave originating
from an observer located at a distance R from the body. (The
coordinate system is fixed within the scatterer.) The high-frequency
time harmonic far-field scattered from a general target can be written
in the form (Reference 4)

i2kR
E e N i(2kR - r+ i )

F(R) - 22rR I A e

2
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where the scatterer is taken to be composed of N (possibly infinite)

scattering centers with associated (real) scattering strengths Ai,
positions rj, and intrinsic phase shifts *j Eo is tNe
(constant) magnitude of the incident field, R is a unit vector directed
away from the observer, k - 2 1T/A in the wave number, and 2(R * rj +
R) is the (two-way) wave-travel discance from the observer to the jth

scatterer. (We have suppressed the eiwt time dependence.)

In a standard cartesian coordinate system in which R lies along
the z direction and rj has components (uj, vj, wj), define

i 2kR

E e m-, 2,m3  0 0

ml,m 2 ,m3 2nR j-1

i(2kR - rj +

where the M4 are integers. In terms of these definitions; the

various phase derivatives can be determined from Equation 1. In the
high-frequency limit, we have for example:

~'E1 0 0'
X1o00 ax 1,-)cOs(O-01 o0 )

X20 :__2• E2•Osin(O-*200) -x • sin('ý-0100)

ax2

X1l01 - k = - in(-10)- sin(ý-ý100) (2)

axak k k E

and so forth. (We assume that only the central element of the antenna
array is u3ed for estimating wave-number derlvatives.)

To obtain the statistics of the X mn, we make the following
assumptions. We take {Ai} to be a set of indec)endent random
variables, each A4 havingte same statistical frequency diitributiorL

3
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fA(Aj). For our complex physical scatterer, we also take {1j} to
be a set of independent random variables symmetrically distributed on
(-7r,i) with distribution f(Wi). This assumption is not only
appropriate, it greatly simplifies the following calculation.
Moreover, at high frequencies (for which X is much less than a
"typical" target dimension), it clearly will not alter significantly
the results that would be obtained by assuming the target to be
composed of noninteracting, convex, and perfectly conducting scattering
centers. Finally, we suppose that the aspect angle through which the
target rotates is sufficiently small so that the statistics a-e
stationary and so that each Aj(R) and *j(R) remain essentially
fixed.

We begin by examining the statistics of

E £nnE= ---- cos(0 - 0 n 
(3)

Define

s = I A Ccos(Bj), t A -,in( 6)

u- SIA a cos(6 ), and v I A•a sin(s)

where Oj E (2kuj/R)P-(2kvj/R)m(2wj)n, j 0 - 2kR - rj +
j , and the sums are taken to range from 1 to N. (Suppressing the

(e,m,n) depeudence will not cause confusion in the following.) Then we
:an wtLte

su + tv
zmn s2 + t2

Under the stated assumptions, we can show

<s>- <t> = <u> =<v> 0

G2 <s2> - <s>2 a2, and c 2  o2S • t U V

4
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It is easy to see (by calculating cross correlations) that s, t, u, and
v are statistically independent. Since each of these terms can be
written as a sum S - r•j, where C are identically distributed with
nonvanishing finite variances, they each satisfy the Lindberg
conditions (Reference 5) and so have asymptotically normal frequency
distributions.

It is a straightforward calculation to show that both E and Ejmn
of Equation 3 are !ndependent kayltigh-distributed random variables.
The independence of 0 and oemn follows from the independence of the

normally distributed complex variables E exp(io) and E
exp(ioimn), so that the product Etgn cos(o - tkmn) is normally
distributed and independent of E. Finally, we can cozclude that the
statistics of &£mn, a., the quotient of normal and Rayleigh-
distributed independent random variables, can be expressed as a
Student's "t" distribution:

2

(9)M Imn(4
2mn (2 2 + 2) 3/2' (4)

Xmn

where

02;. I ffA2 2 cos 2 (6 )f (j )fA(Aj )doidA.S1_2 -u__ __- IA
c a N• +c ffA2 Cos2(8 )f (oj)fA(Aj)dojdAj

To write this in a more tractable form, observe that a scatterer of
strength H x A, located at rj, has scattered intensity equivalent to
M (in-phase) scatterers of strength A at the same location. Define a
weighted density function by

A2p(r )AVj f A f (Aj)dA

where A is a constant and &Vj is an incremental volume about rj.
Substitution yields

5
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A2  * 2 p(rj) AV J 2  (r)d3r
S limra - "-I---(---p-r-d 3r

N+- A 2  p(r ) AV -C0

(See Reference 5 for the details of these calculations.)

Of course, this result gives the frequency distribution of the
first derivatives of the phase. ihe frequency distributions of the

higher derivatives follow from this result. ior example, from
Equation 2 w- see that the second derivative of * with respect to x can
be treated as a function of three independent Student's "t" distributed
random variables:

z - 8 - 82S3

We can compute the statistical distribution of z in the usual way as

f (z) - F F g,.,(z + r) gC_) £,nn(t)dtdr
z - -

-- ar -def

where the g are defined by Equation 4. Making the substitution
T1• t2/r, the integral over t can be seen to be of the tabulated
variety (Reference 6). After some algebra, we are left with

I 200 B(3/2,3/2)

Iz 2[(fl2
1 0 0 _z) 2 + Q2200]3/2

(I - y)3. F(i2,3/2;2;yz)
-I ( + Y) (y2 + 2by + a)3'/2

where

6
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(1,2100 + z) 2 + a2200

a=
(S12100 _ z)2 + 112200

( 21 _ z)( 2
10 0  + Z , - g2 200

b=
(-/2100- z) 2  + 12200

r - S12100

r + Q2100

' is a beta function, and F is a hypergeometric function. We shall
satisfy ourselves with an approximation to this last integral.

Observing that the term (I - y) 3F(1/2, 3/2; 2; y 2 )/(l + y) is
singular at y - -1 and decays very rapidly to 0 thereafter, we take

ff C J 6(y + 1)(y- + Zby + a)-"' dyfz _

where C is a normalization constant and 6 is a delta function. Our
final result follows easily from this last integral.

We have shown that ti:e distributions of the phase derivatives

X~mn (Equation 2) obey

f 00(X) - 2 1oo02 (-a00 2 +

f2oo(X) - -• S2 0 02(Q2 C02 -* )2)-3/

flO(X) -_ j102( l2 + X2)-3/2 (5)

etc .... where

7
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2 - (A- f u- p(r)d 3 r

Q200 - f u4 p(r)d 3 r

Q101 2 - 22 Lk f u 2w2 p(r)d?r

The distributions of the higher derivatives follow from similar
considerations.

In the next section, we shall show how the Q mn can be related
to target structure.

TARGET-SHAPE DESCRIPTION

in the following, e take as our ta t-s e descriptor the

scattering center density function p(r). Associated with this is a
characteristic function defined by

E(A) = f p(r)eiX-r d 3r (6)

Expanding 6()) by Maclaurin's formula yields

V Jlml,2m2.3ma'3

=1 + I" + in7

n-l m ml,m 2 ,m 3  mr!m 2 !m3 ! Rv (7)
S m 1 ,m2,m3mm 33

where

m11m 2 ,m 3  n rlml, 4m2 .3 31

8
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gid RV is a ;imainder te v-: lin RV - 0. Subz: .ituý..oti ot Equation

6 into this last definition yields

= um 1vm2W'13 p(r)d 3 r

(For example, thv momeucs of o(r) det.ermine p(r) by inversion of the
tracnform Equation 6.)

Ta-gets syTrmn&'rtc ac.ross the coordinate planes will have vanishing
"odd" momden.s. Sach targers can, ch-refore. be reconritructed from a
knowledge of their ".evwn" nomernts oni>. We have seen that the statis-
tics of the uisi derivativeF- depeed in a simple way on these even

moment,., and it is a straightforward n.tter to extract this information
from a phr-se-derivAtive data set.

ESTIMATION OF ,

Given a collec~ion of M-phase-derivative data poitns gathered from

the target modeled in the previous discussion, we seek to estimate
(2k/R) 2 (l+m)2n For a complex target, it

is known that Xtn to a rapidly varying function of aspect. There-
fore, we are often in the position of looking at a widely varying data
set from a target, which iztself varies only slightly in presentLd
aspect. For this situation, we can determine the value of Qmn that
best matches these data to the Student's "t" distribution law that is
expected.

Aesuming the statistics of Equation 5, the maximum-likelihood
estimator for Qn will be the on 0 . that maximizes the function (Equa-
tion 7)

M n2 /2

A(fl )-n R 23/
Emn

where the product is taken over all the M elements of the data set
Ix. Here, we choose instead the value of fmn that maximizes

the logarithm of A(Qmn) (which will also maximize Qnmn), for
obvious reasons.

9
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Differentiating knA(Qemn) with respect to smn and setting the
rLsult to zero yields the relaticn

M 12M • imn M

J .2 2)3/2 -3

I =1 S1tm + x1 )

Solving this equation is tantamount to finding the real roots of a
polynomial of degree 2M, but since it 5 the sum of functions of the
form

12/2 1

0 2 + Xi2 3

then there will be only two real zeros, which will be located symmetri-
cally about the origin, and the magnitude of either zero is the solu-
tion. Thus, we can use an iterative scheme to solve for sltn"

SA•PLE RESULTS

Targets ot the kind that we hava been modeling allow for the easy
construction of simulated d&a sets. This is because we are not trying
to locate the actual scattering centers associated with a specific tar-
get. Instead, we are free to create structured collections of scatter-
ers and investigate th3 ability of the devised algorithm to accurately

plish such a verification, we developed a computer simulatinn that (1)
creates a statistical target model, (2) determines the relevant phase-
derivative information over a small range of random aspects, (3) esti-
mates the correspondi.ng moments of the scattering center distribution
function, and (4) reconstructs the "target" by inverting Equation 6.

Each of the targets displayed in Figures I through 3 consisted of
100 scattering centers randomly iocated within a plane-symmecric
suppozt "shape." Each scattering center was randomly assigned a scat-
tering strength and -3sociated phase shift. Data sets consisting of
the first, second, a.d third derivatives of the scattered field phase
were constructed by "viewing" T:he target from different aspects. We
have chosen these a3pects to lie within a small "cone" of directions

10
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(- 3 x 3 degrees) centered on one of the multiple symmetry directions

of the target.

S0

t200

a0 5 1 5 1 26 - • 5 4
74 4 0

5 8 5 0 6 8

58, A 2 P

7

08

(a)

9 0

I...q< 

1

(b)

FIGURE 1. Synthetic Target (a) and Its Reconstructed Contour "Image"
(b). The target consisted of 100 scattering centers randomly placed

inside the displayed support with random scattering strengths (shown in
the figure) and random local phase shifts. Target dimensions are 10 x

10 x 1; modeled wavelength is X - 10-2; and range ir R - 103. The data
consisted of the first three phase derivatives "'collected- randomly
from within a 3- x 3-degree range of aspects.

d%9
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6

(a) (b)

FIGURE 2. Synthetic 100-Point Spherical Target (a) of •dius 10 and
Its Reconstructed Image (b). All other parameters are as ' Figure 1.

2 0

-2 2
0 2 83

S23

(b 0 5 5 0

13 3 0 38

7 5 1 7 4

S8 0

a]6 7 9

(a) (b)

FIGURU 3. Rectangular Plate Thrget (a) and the Image Recon-

structed From Its Synthetically Determined Scattering Data.
The support dimensions of the target are 15 x 20 x 1; all
other parameters are as in Figure i.

12
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The target images were recaptured by using Equation 7 to load a
(64 x 64 x 64) array and then using a three-dimensional fasL-Fourier
transform algorithm to invert Equation 6. Finally, the recaptured
density function was collapsed along an axis to facilitate the plotting
routine; thus the figures really represent an average density along
this axis.

MEASUREMENTS OF THE PHASE-FRONT DERIVATIVES

For implementation in a practical radar, the technique presented
in this report requires the meusurement of the first three or so
spatial derivatives of the echo phase front. This section discusses a
technique for measuring these derivatives.

To measure the phase-front derivatives, the phase front is sampled
and the finite difference approximation to the derivatives formed. We
assume for this discussion that the first three derivatives are
desired. Measurement of three derivatives requires that the phase
front be sampled by four antennas, as shown in Figure 4, where for now

10 TARGET

PHASE FRONT

I-

t3 4,

FIGURE 4. Four-Element Antenna Array With Impinging Wave.
A sample locus of constant phase is shown. The 0i
represent the electrical distance 2 Trzi/I to the constant
phase locus, where zi is the physical distance.

13
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to the direction to the target. That is, the tracking-angle error is
zero. Denoting the phase at each antenna as 01 0 (i - I...4), the
finite difference approximations to the first three differentia's are
given by

(1) 0 - 0

40 04 203s 002 (9)

and

() 00 0 0
O - 3 + 3 - 110)

These differentiais can be measured by the scheme showr in Figure 5.
The phaae discriminators produce an output that is the radio frequency
(RF) phase difference between the two adjacent antenna elements. The
path lengths from antenna elements to discriminators are constructed to
be equal. The arrangement of difference amplifiers (whose bandwidth
need only accormodate the rate of change of the RF phase, not the RF
itself) forms Equations 8 through 10.

PHASE

O--,,ISCAI MI N ATOCRS

FIGURE 5. Interconnection of Four Antenna Elements to Extract the
First Three Phase-Front Derivatives,

14
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In general, some amount of tracking error will always exist
(Figure 6), in which case (in the far field) the RF phase at each
antenna is given by

ý1- 00

0
¢2" -¢2- Od sin e

0

03 - 03 2 d sin 6

0
04- 04- 3Od sin e

TO TARGET PHASE FRONT

to 5. -nd SINO\ \ I

S3

FIGURE 6. The Phase Front of Figure 4 Incident at an Angle
e. The squares present the new phase-front sampling points;
the triangles are the sampling points in Figure 4.

15
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The zero refererce for the phase is taken arbitrarily at element 1.

Note that for aa identical wave front, different values of the *i°
are measured, because rotation of the wave front through an angle e has
the effect of decreasing the spacing between the antennas. This causes
the wave front to be sampled at a different set of points. The
*i°, however, still represent the required phase values for forming
the derivatives. Forming Equations 8 through 10, Equation 8 becomes

(1) o 0 o
A0 .3 -2 6d sin 0 (11)

and Equations 9 and 10 are unchianged. Hence, a biased estimate of
A00) results, hi-t t( 2 ) and Aý(3) are unbiased. However, forc-
ing Equations 8 through 10 to have zero mean (necessary conditions for
this technique) will, for constant 0, remove the bias term in Equation
11. Clearly, problems may rrise if the tracking loop allows fluctua-
tions in 0 that approach the rate of change of the phase differentials,
thus causing 0 to vary during the measurement interval. The tracking
loop must be designed to prevent this in an application of the tech-
nique described in this report.

CONCLUSION

We have developed a statistical high-frequency inverse scattering
method that allows the recoLstruction of very complex targets from
extemely limited data. These data consist of various phase derivatives
collected over a small renge of aspects and frequencies. Signifi-
cantly, we do not require that this aspect dependence be known. We
have assumed the target to be composed of many individual scattering
centers, eich with potentially different morphological properties;
however, our result does riot require that any specific assumptions be
made about the statistics of the local scatterer strengths.

Because we have used the classical central-limit theorem to obtain
the relevant statistics (and from these the even moments of the
scattering center distribution functions), the technique allows only
the reconstruction of symmetric targets.

164
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